wholeness

On the Concept of a Dialectical Divide

Commenting on my lecture, “The Dialectical Laboratory”, Tony Hardy has raised a number of interesting issues. They take us to one overriding question: “What do we mean b the term dialectical? A dialectical question, I believe, splits our world-view down the middle: virtually all of our perceptions, and our purposes as well, are placed at risk.  A dialectical question, therefore, is not one which can be resolved by negotiation among familiar options. We stand before a new and altogether different court of review. The principal model for this is the Socratic dialogue, which places a respondent’s life, and that life’s central goals under devastating review.  Worst, we might say – that review is not that of an external judge, but a hitherto unrecognized standard within. The orator Gorgias, acclaimed political expert of Athens of his day, is a prime target of Socrates’ dialectical art. His very life crumbles before our eyes as he recognizes that it has lacked one transforming concept, that of justice. He holds great powers, but he has used them to serve no good end.  This is a tragic fall, mirrored in the fall of Oedipus. The classic term for a life, or a world-view, based on false pretention is HYBRIS (pride). To live on the wrong side of a dialectical divide is an invitation to disaster.

Sight is the universal metaphor for this inner vision which can judge truth. Socrates images a dialectical emergence as the passage into sunlight, from the false lights and shadows of a cave, into the full light of the sun. Oedipus takes his own eyesight in rejection of the false vision which had guided his life.

In the spirit of the same metaphor, we rightly speak of the perspective we gain when as readers we witness a transformation of world-view, as fascinated readers of the Socratic dialogues, or terrified spectators of Oedipus’ downfall, in the theater.  We can weigh and discuss a dialectical world-change as if it were a mater for formal consideration, as I have done in a recent web posting on what I’ve characterized as the Lagrangian Dividebut we should not lose track of the stakes at issue. Dialectical issues cannot be resolved by reasonable adjustment or adjudication by a court located within either system.  From the point of view we all occupy as dedicated members of a present world system, exit from that system looks like apostasy, or a tragic fall.

Although the alternative we described as “Lagrangian” between organism and mechanism looks like a problem within natural philosophy, I believe our concept of natural philosophy sets the stage for our view of life and our social institutions.  Although it is the pride of our modern science to believe that its very success depends on its freedom from “metaphysics”, this illusion strongly suggests that of Oedipus or Gorgias. To elaborate this thought would be matter for a much longer discussion, but if I were to assume the mantle of Teiresius, the blind seer who counsels Oedipus, I think it might be enough to utter the keyword competition. The concept of lives, nations and a world, based on competition, strife and isolation, rather than (to put it simply) love and community, may well be killing our planet and leading our so-called “international community” to self-destruct.

It used to be fun to imagine a “visitor from Mars” taking a distant look at our human scene; he would regularly be thought to find us insane.  Ironists such as Swift, Aristophanes and Shakespeare have found ways to make that same judgment. If investing our lives in scenarios in flat contradiction to our own best sense of values is insanity, we can see how they might all be right.

There is a better way; we do have a choice – though in a thousand ways we forbid ourselves to think about it.

In one way or another, consideration of this option seems to be the ongoing concern of this website!

Organism vs. Mechanism: Science at the Lagrangian Divide

The Lagrangian equations are a powerful set of differential expressions describing the motion of a complex system.  With one equation for each component of the system, they would seem to offer a powerful expression of the relation of part to whole. They are, however, seriously ambivalent: they can be read in either of two opposite ways. They present, then, a stark problem for the art of interpretation, the highest branch of rhetoric, as it comes from Augustine to Bacon and Newton.  The same statement becomes a watershed; it may belong to one world, or its opposite – but not both.  Each is a containing frame, within which we picture, and live, our lives

Read in one way – the way most common today – they are seen as derived from Newton’s laws of motion, and thus adding nothing fundamentally new. From this perspective, they merely rephrase Newton in terms of the concept of energy, a mathematical convenience in certain circumstances but making no fundamental change in our understanding of the natural world. In this interpretation, they express what we today call mechanism, which sees the motion of any system as the mere aggregation of the motions of its individual parts. Causality flows upward; motions of the parts explain the motion of the whole.

Seen from the other side of the Lagrangian watershed, however, the same equations express a world of a totally different sort. Here, the same equations are derived from the Principle of Least Action – a concept which readers may recognize as one of the recurring themes of this website.  The system itself as a whole, described in terms of potential and kinetic energy, becomes the primary reality and the source of the motions of the parts. Causality arises from the  interplay of these energies, and flows in the reverse direction, from whole to part.

Within the world of mechanism – the first interpretation – there is no place for goalor purpose. These are concepts considered far too vague to meet the standard of objectivity, the signature of modern science.

Remarkably, however, Least Action reconciles purpose with quantitative objectivity. By means of the mathematical technique of variation, which considers all possible paths, this principle seeks the optimum path by which potential energy may, over he whole course of any natural motion, be transformed to kinetic. In this interpretation of Lagrange, then, our world-view is transformed. Science itself, while remaining strictly objective and quantitative, becomes at the same time goal-oriented – all at once!

More than this, however, science on the Least Action side of the Lagrangian divide becomes, at last, fundamentally organic. This arises from a further, crucial feature of Least Action: if a system as a whole moves in such a way as to minimize action,so also will, within the bounds of external constraints, every part of that system. The goal which belongs primarily to the whole, is pervasive: it is shared by every part.

It was important in stating this principle to add “within given constraints”, because a rigid part of a man-made machine has few options. By contrast, the myriad components of a leaf, or of a cell or enzyme within the system of a leaf, navigate among unimaginable options toward the common goal of turning sunlight into life, over the season of the leaf, the life of the tree, or the evolution of photosynthesis on earth.

It is this community of purpose, nested and shared, which renders a system trulyorganic – a living being, something fundamentally beyond any bio-molecular mechanism, however intricate.

It is hardly necessary to add that it is this sense of nested purpose and shared membership in natural communities which has been so lacking during the long reign of mechanism. Our so strongly-held worldview has diverted us from that other option, which has nonetheless long formed a strong alternative flow of thought and practice in science, mathematics, politics and the arts. Now in many ways, not least the earth’s biosphere itself, the demand is upon us to recognize that we do have an option of immense importance. Viewing this whole scene now, we might say, from the Lagrangian ridge-line itself, with both worldviews clearly in view, our task is truly dialectical: leaving none of the insights of the past behind, we are in a position to move forward into a new, far richer and wiser world.

That new world-view, which has appeared here as a richer interpretation of Lagrange’s equations, is the ongoing theme of this website – always with an eye to Maxwell’s turn to Lagrange as mathematical vehicle for the launch of his concept of the electromagnetic field, paradigm, if ever there was one, of that whole system of which we have been speaking.

[A brief introcution to the Principle of Least Action is given in my lecture, “The Dialectical Laboratory” .

It is important to add that in this thumbnail sketch, many nuances of the application of Least Action have been left without mention]

The Aristotelian Pathway to the Modern World and Beyond

I’m just back from a week of seminars in Maine: an overview of Aristotle’s world-view, based on a sequence of selected readings.  Although I’ve long been curious about Aristotle’s thinking, and written about this to some extent on this website, I’ve never before caught the full coherence and impact of his world-view. I’ll leave details to future posts to this blog, but here’s an overview of a few highlights. Tradition has misleadingly titled many of Aristotle’s works. His “Physics” is not limited to what we today call “physics”, but actually addresses the foundations of the entire natural world, of all things that move, from stones to living creatures, including ultimately ourselves. Aristotle’s “Physics”, then, lays the foundation for his other works, and in the “Metaphysics”, of the cosmos itself. We ourselves he will say, are rational by nature.

What is “nature”?  An inner principle of motion, Aristotle says; things move not because they are pushed or pulled, but through inner tendencies. This is by no means nonsense. Within what we call “physics”, think for example of the second law of thermodynamics, which asserts, in more formal terms, that heat “tends” to flow downhill. Within our own lives, think of fear or love, and our innate desire to know. Thus in Aristotle’s inclusive world-view, there’s no occasion for the infamous split which today appears to divide our sciences from the humanities.

Such unification need not threaten the integrity of the sciences. Remarkably, within this encompassing perspective Aristotle lays a secure foundation for a fully valid alternative approach to modern science. Key is his concept of “energy” (the word, energeia, is his!); motion consists in the unfolding of energy from potential to kinetic form. Importantly, energy belongs primarily to whole systems, so wholeness and living, organic unity are foundational in Aristotelian science.

In the 17th century Leibniz, who knew his Aristotle, put this into mathematical form. He introduced, in open opposition to Newton, a version of the calculus which served to open alternative path into not just modern physics, but modern thought more generally.

As a result, we can discern two very different, parallel pathways through the history of western thought – one leading to Newton, Descartes, and a world of force, competition and mechanism; the other, prefigured by Aristotle, leading to wholeness, cooperation, friendship and life.

The path through Newton, Locke and Hobbes is very familiar to us; it has led t the world we know today, a world of strife, competition, and ever-escalating warfare. That other thread, which runs from Leibniz, Euler, Lagrange, Hamilton, Faraday, Maxwell and Einstein, bespeaks unity and intelligent cooperation. Within physics, this appears especially in the concept of the field; but more generally, it looks to a society of intelligent cooperation in the solution of our common human problems. It is easy to see, I believe, which is better suited to address the problems of warfare and environmental catastrophe which beset human society today.

Nobody, of course, is offering us this choice of roads into the future.  But we have independent minds, and it would be good to know that there is a difference in principle even if we see no way at present to pursue it in practice. I propose to write more about this in upcoming postings – and it will be good to know what others think of this Aristotelian way I’m convinced I’m seeing.

Can An Ecosystem Model Help Us Think About Wholeness?

Readers of this website will be aware of my preoccupation with the question of "wholeness". The more I observe the world's current struggle to find its way through complex economic structures or global systems, the more convinced I become of the degree to which our deep-rooted commitment to individualism is betraying us. Individualism is both an ethic, which we are determined to impart to the world, and a habit of thought. This is not the moment to follow that line of thought further; it has been the subject of other postings, and it will be of more in the future. My concern at the moment is to offer a new approach to this issue. On a visit to the Key School in Annapolis recently, on the shores of the Chesapeake, I was struck by the widespread awareness there that the Bay is sick: 27% of true health was the figure I was hearing. That led me to wonder about the concept of "health" of an ecosystem, and how it might be grasped. With the aid of the computer, I knew, the human mind is today able to reason about problems hitherto too complex to analyze. Could I find a computer model of an ecosystem?

By good luck, I've found not only such an ecosystem model, but a revealing account of a team project by which it was achieved. Teams of experienced scientists agreed to set aside their normal researches into separate compartments of the ecosystem, and direct their efforts  instead to a different kind of learning: to the common goal of constructing a coherent computer model which would capture the intricate interrelationships of these many components of one single system.

The system to which fortune had led me was a salt marsh at Sapelo Island on the coast of Georgia. The Book, edited by L. R.Pomeroy and R.G.  Wiegert, is "The Ecology of a Salt Marsh" (New York, 1981). Its innocent title fails to suggest the very special interest of the project it narrates. Quite elegantly, the book pulls together a fascinating account of the scientists' experience in disciplining their work to this goal.

An aesthetic of wholeness is invoked at the outset, with lines from  Sydney Lanier's poem, "The Marshes of Glynn". We learn much about this new sort of scientific endeavor when the book closes with a section on the aesthetic of the marsh, and a final quotation from that same poem.

Though a layman in matters of biology, I've since been making an effort to follow the turns of this inquiry. I won't say more how, beyond the remark that the effort proved successful only after the scientists had learned of a fundamental error they had been making, and accepted correction from the computer.

People whose judgment I very much respect have expressed their doubts as to the whether such a computer model is an appropriate means for approaching wholeness, or whether at this point I'm confusing true wholeness with a mere assemblage of parts by complicated aggregation. (My thoughts go back to Plato's "Parmenides", and the paradigm there of Hesiod's wagon: I agree that the "wagon" is something quite other than an assemblage of its parts!) In these terms, is a working computer model helping us to grasp the wholeness of a system, or betraying us into confusing true wholeness with a merely clever example of aggregation? In the case of a living ecosystem, in which the wholeness is manifestly organic, is the computer misleading us, tempting us to confuse organism with a complex structure of inherently inorganic parts?

My case for the computer as a welcome aid in advancing toward a  grasp of true wholeness must be made in future remarks which I plan to post soon.