Holism

The Deep Roots of “Western Science”

I’m very excited to have been invited to participate in the Cosmic Serpent project, which will be exploring the relationships – likenesses and differences – between Indigenous views of Nature, and the world-view of “western science”.

My first thought about this is that what we are accustomed to calling “western science” is not one well-defined, monolithic structure, but rather a growing and changing, organic body including strongly contrasting strands and a deep tap root which reaches far back in history to ancient Greece and beyond.

It is this richness and diversity of our present notion of “science”, together with its vigorous signs of growth, which make the Cosmic Serpent conversation something far more than a confrontation of two distinct ideas. Whether there’s the same degree of diversity and growth within Indigenous approaches to Nature is something I don’t pretend to know, but the coming conversation may reveal.

I feel impelled to say something more about that deep “tap root” of modern science, as it lies close to my heart and has been the subject of much that I’ve thought about and written. (I wrote about one aspect of it in the lecture “The Dialectical Laboratory”, elsewhere on this website.) For me, as we look backwards from our present stance toward a distant past, it is Leibniz who’s the key. Between Leibniz and Newton lay a split far more important than the question of prioty in laying the foundations of the calculus usually referred to. In ways not always recognized, Newton was looking to Christian scripture, especially the Old Testament, when he placed the notion of “law” at the foundation of his Principia. Leibniz, by contrast, was looking to Aristotle and saw intelligible principle – not “?law” – as the basis of our approach to Nature. Two of Leibniz’ crucial terms: energy – potential and actual – come straight from Aristotle’s Physics, and remain to this day beacons of an alternative path in physics. Not forces between particles, the dominant concept of the mechanical view of Nature – but motions of whole systems guided by principles rightly thought of as holistic – set this other course. It becomes formulated mathematically as the law of least action, which evolves in turn into the equations of Lagrange and Hamilton, and in general into the Variational approach to natural motions. It is an approach inherently compatible with the notion of TELOS, or goal. In a broader arena, it is at home, for example, with Gestalt theory in psychology and the theory – at once of art and science – which Goethe sets over against that of Newton in his Farbenlehre, the Theory of Color.

For the practicing physicist, the Newtonian and the Lagrangian methods may seem convenient alternatives to be called upon as occasion demands. But in truth they reach very deep into alternative conceptions of the natural world and its ways. As I explore in Figures of Thought, it was not for convenience but out of deep conviction that Maxwell chose the Lagrangian approach in his own development of the equations of the electromagnetic field in his Treatise on Electricity and Magnetism. That this is an issue for human thought in general, and not a problem whithin mathematical physics alone, is shown beautifully by the fact that Maxwell chose the Lagrangian method as the way to express within mathematics the insights of Michael Faraday, who knew, and wanted to know, no mathamatics.

I have to acknowledge that there’s a manifest contradiction in what I’ve just written: I spoke at the outset of one “tap root” of science, but this whole discussion has been of two: one Newton’s, and the other that of Leibniz. I’m convinced these two lead back, by way of Alexandria, to one lying still deeper – but that must be the subject of another “blog”!